Sparse-View X-Ray CT Reconstruction Using 𝓵1 Prior with Learned Transform

نویسندگان

  • Xuehang Zheng
  • Il Yong Chun
  • Zhipeng Li
  • Yong Long
  • Jeffrey A. Fessler
چکیده

A major challenge in X-ray computed tomography (CT) is reducing radiation dose while maintaining high quality of reconstructed images. To reduce the radiation dose, one can reduce the number of projection views (sparse-view CT); however, it becomes difficult to achieve high quality image reconstruction as the number of projection views decreases. Researchers have applied the concept of learning sparse representations from (highquality) CT image dataset to the sparse-view CT reconstruction. We propose a new statistical CT reconstruction model that combines penalized weighted-least squares (PWLS) and `1 regularization with learned sparsifying transform (PWLS-ST-`1), and an algorithm for PWLS-ST-`1. Numerical experiments for sparse-view 2D fan-beam CT and 3D axial cone-beam CT show that the `1 regularizer significantly improves the sharpness of edges of reconstructed images compared to the CT reconstruction methods using edge-preserving regularizer and `2 regularization with learned ST.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT

Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT). Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction t...

متن کامل

Improved Compressed Sensing-Based Algorithm for Sparse-View CT Image Reconstruction

In computed tomography (CT), there are many situations where reconstruction has to be performed with sparse-view data. In sparse-view CT imaging, strong streak artifacts may appear in conventionally reconstructed images due to limited sampling rate that compromises image quality. Compressed sensing (CS) algorithm has shown potential to accurately recover images from highly undersampled data. In...

متن کامل

A Multi-view Active Contour Method for Bone Cement Reconstruction from C-Arm X-Ray Images

A novel algorithm is presented to segment and reconstruct injected bone cement from a sparse set of X-Ray images acquired at arbitrary poses. The Sparse X-Ray Multi-view Active Contour (SxMAC – pronounced “smack”) can (1) reconstruct objects for which the background partially occludes the object in X-Ray images, (2) use X-Ray images acquired on a non-circular trajectory, and (3) incorporate pri...

متن کامل

Iterative Image Reconstruction for Sparse-View CT Using Normal-Dose Image Induced Total Variation Prior

X-ray computed tomography (CT) iterative image reconstruction from sparse-view projection data has been an important research topic for radiation reduction in clinic. In this paper, to relieve the requirement of misalignment reduction operation of the prior image constrained compressed sensing (PICCS) approach introduced by Chen et al, we present an iterative image reconstruction approach for s...

متن کامل

Algorithms for sparse X-ray CT image reconstruction of objects with known contour

We develop algorithms for sparse X-ray computed tomography (CT) image reconstruction of objects with known contour, where the signal outside the contour is assumed to be zero. We first propose a constrained residual squared error minimization criterion that incorporates both the knowledge of the object's contour and signal sparsity in an appropriate transform domain. We then present convex rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.00905  شماره 

صفحات  -

تاریخ انتشار 2017